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ABSTRACT: Monitoring biodiversity is essential to assess the
impacts of increasing anthropogenic activities in marine
environments. Traditionally, marine biomonitoring involves
the sorting and morphological identification of benthic macro-
invertebrates, which is time-consuming and taxonomic-
expertise demanding. High-throughput amplicon sequencing
of environmental DNA (eDNA metabarcoding) represents a
promising alternative for benthic monitoring. However, an
important fraction of eDNA sequences remains unassigned or
belong to taxa of unknown ecology, which prevent their use for
assessing the ecological quality status. Here, we show that
supervised machine learning (SML) can be used to build
robust predictive models for benthic monitoring, regardless of
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the taxonomic assignment of eDNA sequences. We tested three SML approaches to assess the environmental impact of marine
aquaculture using benthic foraminifera eDNA, a group of unicellular eukaryotes known to be good bioindicators, as features to
infer macro-invertebrates based biotic indices. We found similar ecological status as obtained from macro-invertebrates
inventories. We argue that SML approaches could overcome and even bypass the cost and time-demanding morpho-taxonomic

approaches in future biomonitoring.

B INTRODUCTION

Human activities are impacting the marine ecosystem
functioning through climate change,1 environmental pollution,2
or human industry driven eutrophication,” and these pressures
are likely to increase with the projected demographic
expansion. Such impacts are traditionally monitored by
surveying biodiversity, usually focusing on benthic macro-
fauna.™ Biotic indices (BI) have been formalized to combine
taxonomy and alpha-diversity measures (e.g., species richness,
Shannon index) to reduce the data dimensions into single
continuous values that are used to ascribe samples to an
environmental quality status. Such indices include for instance
the AZTI Marine Biotic Index” (AMBI) or more specific
Indicator Species Index’ (ISI), and the Norwegian Sensitivity
and Quality Indices® (NSI and NQI1). The formulas of these
indices include taxon-specific ecological weights or categories of
tolerance to disturbance defined from empirical and exper-
imental data.® Indeed, all indices currently applied in benthic
monitoring are based on the sorting and identification of
macro-invertebrate specimens, which is extremely time-
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consuming and taxonomic-expertise demanding. The need for
faster and cost-effective ways to conduct biodiversity surveys is
of prime importance to allow an effective management of
marine resources.

High-throughput amplicon sequencing and the molecular
identification of multiple species in environmental DNA
(eDNA metabarcoding) offer a fast and cost-effective way to
describe biological communities.” It gives the opportunity to
overcome the limitations of morpho-taxonomy based bio-
monitoring.'*~'* Recently, several attempts have been made to
use the eDNA metabarcoding for biomonitoring fresh-
water'”™'® and marine ecosystems.'”~>* Comparisons of BI
inferred from eDNA metabarcoding and morphological data
showed that similar values could be obtained in the case of
freshwater diatoms'®"® and marine invertebrates.”**> However,

Received: March 23, 2017
Revised: ~ June 26, 2017
Accepted: June 30, 2017
Published: June 30, 2017

DOI: 10.1021/acs.est.7b01518
Environ. Sci. Technol. XXXX, XXX, XXX—=XXX


pubs.acs.org/est
http://dx.doi.org/10.1021/acs.est.7b01518

Environmental Science & Technology

all these studies were dependent on reference sequence
databases for taxonomic assignment, to retrieve the ecological
weight associated with the assigned taxa (except for ref 18).
This strongly limited the number of sequences included in the
analysis, because a large proportion of sequences remained
unassigned, or because they were assigned to taxa of unknown
ecology 202426

To overcome these limitations, we propose to use supervised
machine learning (SML) for the development of predictive
models to infer BI values from eDNA metabarcoding data
without relying on taxonomic assignments. In SML approach,
the predictive models are based on the knowledge extracted
from a training data set, which typically consist of a set of
features and associated labels (classification) or continuous
values (regression). The aim of SML is to fit the training data
to some function that can be used to predict a label or a
continuous value to new input data®’ (e.g, new samples). In
the recent years, there has been a growing interest to investigate
the usefulness of SML for ecologicz1l,28_30 genetic,31 or
microbiome analyses.27’3l_34 However, up to our knowledge,
only one study has successfully used SML to predict pollution
levels, as well as the values of 26 geochemical features based on
a training data set composed of bacterial 16S eDNA
metabarcoding data.”

In this study, we investigated the possibility of using SML to
build predictive models for the inference of four biotic indices
commonly used for the benthic monitoring of the fish farming
industry. We tested this approach using benthic foraminifera, a
group of ubiquitous unicellular eukaryotes that include sensitive
bioindicators of pollution in marine environments.**™’
Foraminifera are responsive to organic enrichment associated
with fish farming activities, as shown by both morpholog-
ical™" and eDNA investigations.””**** This makes foramin-
ifera particularly appropriate for SML approach, because of
their small size, making them readily captured in eDNA
samples, and because of the lack of well-defined indicator
morphospecies.

B MATERIAL AND METHODS

Sampling. A total of 144 sediment samples were collected
in June and October 2015 at 24 stations distributed at the
vicinity of five salmon farms in Norway (Table S1). Four farms
were sampled at a rate of five stations and the remaining farm at
only four stations because of pebbles at the fifth station. At each
station, two van Veen grabs (1000 cm? model 12.211, KC-
Denmark) were deployed. From each of the 48 grabs, three
samples of ~5 mL were collected from the two first centimeters
of the surface sediment using sterile spoons, transferred into 6
mL of LifeGuard Soil Preservation Solution (MO BIO,
Laboratories Inc.) and frozen at —20 °C until DNA extraction.
The rest of the sediment in each subsampled grab was sieved
through 1 mm mesh and fixed in formalin for morpho-
taxonomic inventory of macro-invertebrates. Macrofaunal data
were used to calculate for each grab four Bls (AMBI, ISI, NSI,
and NQI1) routinely used in benthic monitoring surveys in
Norway.

DNA Extraction, PCR Amplification, and Sequencing.
The 144 frozen sediments samples were thawed on ice,
centrifuged at 2500 rpm for S min and the overlying solution
was discarded. The total eDNA content was extracted using the
PowerMax Soil DNA Isolation Kit (MO BIO Laboratories Inc.)
following manufacturer instructions. The 37F hypervariable
region of the SSU rRNA gene, commonly used as foraminiferal

DNA barcode** was PCR amplified using the forward primer
s14F1 (5'-AAGGGCACCACAAGAACGC-3’) and the reverse
primer s15 (5'-CCACCTATCACAYAATCATG-3’), generat-
ing amplicons of about 200—250 bp as described previously.””
The primers were tagged with 8-nt sequences appended at their
S’ ends to multiplex samples prior to sequencing library
preparation. The tag sequences have been designed with a
pairwise minimum edit distance of 2 and an edit distance of 8
to the corresponding positions of the conserved foraminiferal
SSU rDNA sequence. We assigned the tag primer combinations
to samples following a Latin Square Design (Table S2) to
reduce mistagging events.** The PCR products were quantified
by high-resolution capillary electrophoresis (QIAxcel System,
Qiagen) and pooled in equimolar concentration. The pool was
purified using the High Pure PCR Product Purification Kit
(Roche), quantified using a fluorometric method (QuBit HS
dsDNA kit, Invitrogen) and used for library preparation using
the TruSeq DNA PCR-Free Library Prep Kit (Illumina). After
quantification using the KAPA Library Quantification Kits
(KAPA BIOSYSTEMS), the library was sequenced on an
Ilumina MiSeq System using MiSeq Reagent Kit v2 and a
standard 14-tiles flow cell for 2#251 cycles. The raw data set is
publicly available at the Sequence Read Archive under
BioProject PRINA376130.

Bioinformatics. The paired-end raw reads were quality
filtered and assembled into full-length sequences with a pipeline
written in C language for the fast processing of Illumina
metabarcoding data (https://github.com/esling/illumina-
pipeline). Filtering and assembly parameters are reported in
Table S3. The pipeline included the demultiplexing of each
sequence into its sample of origin by matching the combination
of 8-nt tags present at the 5’-end of each sequence read. The
tagged primers were trimmed from the sequences as well as the
foraminifera-specific conserved region of ~70 nucleotides based
on the detection of its GACAG motif after 60 positions. Every
sequence lacking this motif was discarded. The data set was
then filtered for potential chimeras using UCHIME," version
4.2.40, implemented in the identify chimera_seq.py function of
the Qiime™* 1.9.1 toolkit. We used the default parameters of the
function, but the --split by sampleid option was used to
restrict the de novo search by sample (ie, by PCR). The
filtered data set was then clustered into Operational Taxonomic
Units (OTUs) using swarm"’ 2.1.8 with the default resolution
(d = 1) and the fastidious option. This clustering also included
homologous 37F sequences generated by previous fish farm
sequencing surveys and obtained using identical bioinformatics
processing, including sequences from Scotland,”” from New
Zealand,” and from Norway,"* as well as unpublished data.
The present data set was augmented with these sequences in
order to increase the likelihood of the fastidious option
implemented in swarm to form OTUs supported by the
multiple occurrence of sequences specific to the fish farm
environment. The representative sequences, that is, the most
abundant Individual Sequence Unit (ISU) of each OTU, were
used as input of the assign_taxonomy.py function of Qiime with
default parameter for taxonomic assignment (uclust method),
using a curated foraminifera database (http:/ /forambarcoding.
unige.ch). This database contains 1175 foraminiferal SSU
rDNA sequences representing 125 morphospecies spread into
35S families, and including as well 106 environmental sequences
for which morphospecies are not been yet identified but that
are commonly found in eDNA samples. OTU-representative
sequences that could not be assigned were compared by
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BLAST®’ search against GenBank. The OTU-to-sample matrix
was generated from the result of the clustering including all fish
farms sequences with make_otu_table.py function of Qiime and
the data corresponding to the samples analyzed in the present
study was extracted from this table into the statistical R
environment”' for downstream statistical analysis.

Statistics. The relationship between diversity and distance
from the cage as well as compositional variation of the studied
communities were investigated based on normalized versions of
the OTU-to-sample matrix. Because uneven sequencing depth
across samples can introduce biases in the statistical analysis,
samples with less than 10000 reads were discarded. To
investigate correlations between diversity and distance from the
cage, 100 rarefied data sets were generated by aiming at 10 000
reads per sample using the rrarefy function of the R vegan v2.4-
1 package.”” Several alpha-diversity metrics, based on all OTUs
(including unassigned ones) and their abundance, were then
computed for each rarefied data set and averaged values were
used to fit nonlinear polynomial models using the Im function
in R. These diversity metrics included the OTU richness, the
Shannon diversity,” the Pielou evenness,”* the SN diversity
used in the calculation of NQI1,® the expected OTU richness
(ES100 and ESSO for respectively 100 and S0 reads) and the
Chao richness estimator.”> To investigate compositional
variation, the read counts of the OTU-to-sample matrix were
normalized according to the cumulative-sum scaling method
(CSS) using the metagenomeSeq v1.16.0 R package5 (see refs
57 and 58). The following beta-diversity analyses were
performed using functions of the R vegan package. The
Bray—Curtis dissimilarity index’” was calculated using vegdist
and the resulting pairwise dissimilarity matrix served for
nonmetric multidimensional scaling (NMDS) analysis using
metaMDS with default settings. The values of the Bls obtained
from the morpho-taxonomic data and of distance to cages were
fit to the NMDS ordination using envfit, and ordisurf,
respectively.

Biotic indices values were predicted from the foraminiferal
eDNA metabarcoding data using three supervised approaches.
For reference, either the ecological weights associated with the
taxa of the morpho-taxonomic inventories (correlation screen-
ing approach) or the BI values calculated from these inventories
(supervised machine learning approaches) were considered.
The BI values were predicted independently for the samples of
each farm (testing data sets) based on the samples of the other
four farms (training data sets) used for supervision in the three
approaches. For the correlation screening approach, each OTU
was compared to each morpho-taxon across the samples of the
training set. The reads associated with each OTU in the PCR
replicates of each grab were summed in order to measure
Spearman rank correlations in terms of relative abundance
across grabs. The ecological weight of the taxon that has the
highest rho correlation above 0.7 was associated with the OTU.
Biotic indices were then calculated for the testing data set using
OTUs that were assigned ecological weights.

For the supervised machine learning approaches, either
diversity metrics (diversity learning) or OTUs composition
(composition learning) were used as features. Models were
built for each training data set, and BI values were predicted for
the samples composing each corresponding testing data set. For
diversity learning, the predicted BI values were averaged for
each sample over the 100 rarefied data sets. For composition
learning, the effect of keeping rare OTUs was investigated by
comparing the results obtained when the OTUs with less than

10 reads or less than 100 reads across the full data set were
discarded before CSS normalization. Since only one reference
BI value was available for each grab, the BI values predicted
using both learning methods were averaged for each grab and
the standard deviations were computed. For both supervised
diversity and composition learning approach, we compared two
different algorithms to predict BI values. We compared the
Random Forest (RF) algorithm60 implemented in the ranger
v.0.6.0 R package®" for multithreading and the Self-Organizing
Map (SOM) algorithm implemented in the Kohonen v2.0.19 R
package.”” For the RF algorithm, we generated 300 trees and
used the default “mtry” parameter for regression task, which is
1/3 of the features randomly picked to split the tree at each
node, which usually give the best results.”” RF models were
measuring the importance of features in the prediction of BI
values. For the SOM algorithm, the network was trained with
100 iterations with the default learning rate (linear decline from
0.05 to 0.01 over the 100 iterations). The tuning of the
parameters (xdim, ydim, xweight, topo) were randomly
searched over 100 parameters combinations (100 hyper-
parameter search) with the train function of the caret v6.0-73
R package,”* passing the “random” search option and a 10-fold
cross validation repeated 10 times to the trainControl function.
For each training data set (four farms), the set of parameters
giving the lowest average Root Mean Squared Error (RMSE)
on hold-out samples during cross-validation were used to build
the model that predict BI values for the testing data set (the
remaining farm).

To compare the accuracy of the supervised approaches, the
relationships between the reference and predicted BI values
were modeled using the Im function in R. These BI values were
then converted into discrete ecological quality status, after
averaging per grab in the case of the predicted values. Their
agreement was tested using the kappa2 function of the irr v0.84
R package,” with squared weight because the ecological status
values are ordered from “very poor” to “very good”. Agreement
between the two classifications was considered as “poor
agreement”, for example, Kappa value ranging from 0.01 to
0.2 to “almost perfect agreement”, for example, Kappa value
ranging from 0.8 to 1. For each BI, the best model was the
one associated with the highest Kappa value. Its accuracy was
investigated at the scale of the farm by testing for difference
between predicted and reference values using the Mann—
Whitney test with the wilcox.test in R.

«

B RESULTS

Macro-Invertebrate Morpho-Taxonomic Inventories
and Biotic Indices. The morpho-taxonomic inventories of
75,431 macro-invertebrate specimens comprised 432 morpho-
species, of which 357 have been ascribed to an ecological
category in at least one of the Bls (Table S4). All Bls showed
that the five farms were impacted, with highest values (AMBI)
and lowest values (ISI, NSI and NQI1) within 200 m from the
fish cages (Figure S1). The impact decreased quickly with
increasing distance from the cages. According to the results of
nonlinear models, the effect of the distance from the cage on
the values of every BI was highly significant (Table SS and
Figure S1).

Foraminifera eDNA Metabarcoding Data. PCR prod-
ucts were obtained for 123 out of 144 samples and sequencing
yielded 11257 700 paired-end reads. The quality filtering (i.e.,
base call quality and contig assembly) discarded 24.9% of the
reads (Table S3) and de novo chimera filtering discarded a
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Table 1. Accuracy of Biotic Indices Predictions Obtained from Correlation Screening, Diversity Learning, and Composition
Learning, with the Random Forest and Self-Organizing Map Algorithms®

biotic index approach supervised learning algorithm R kappa
AMBI correlation screening 0.568%** 0.624%**
diversity learning Random Forest 0.641%%% 0.69%#*
Self-Organizing Map 0.492%%#% 0.618%***
composition learning Random Forest 0.662%** 0.555%**
Self-Organizing Map 0.669%%% 0.711%%*
ISI correlation screening 0.65%3%# 0.53 %k
diversity learning Random Forest 0.505%** 0.626%**
Self-Organizing Map 0449+ 0.61%#*
composition learning Random Forest 0.56%%%* 0.631%**
Self-Organizing Map 0.615%%% 0.774%%%
NSI correlation screening 0.508°%#% 0.607***
diversity learning Random Forest 0.83%%% 0.907%%%
Self-Organizing Map 0.83%*7* 0.88%%*
composition learning Random Forest 0.827%%* 0.832%**
Self-Organizing Map 0794+ 0.871%**
NQI1 correlation screening 0.76%%% 0.8%%%
diversity learning Random Forest 0.834%4% 0.887%#%
Self-Organizing Map 0.805°%*% 0.846%%%
composition learning Random Forest 0.81%%* 0.856%**
Self-Organizing Map 0.803*** 0.873%**

“Best predictive models are in bold (i.e., highest kappa statistics). *, P < 0.05; **, P < 0.01; ***, P < 0.001.

further 449 sequences. The resulting 8 449 933 sequences were
clustered along with 45588115 homologous sequences
generated in previous studies and 69716 OTUs were
delineated. An OTU-to-sample matrix was formed from the
9235 OTUs that occurred in at least one of the 123 samples
corresponding to the five studied fish farms. The sequencing
depth of the samples was uneven. It ranged from 42 to 283 431
reads, with an average of 68698 reads per sample. Seven
samples represented by less than 10 000 reads were discarded.
The final OTU-to-sample matrix was constituted of 116
sediment samples as rows, covering the 48 sediment grabs
from which the macro-invertebrates were inventoried, 9170
OTUs as columns, and was filled with the 8414 122 reads
(Table S6). Two additional OTU-to-sample matrices were then
composed from the OTUs represented by more than 10 reads
and by more than 100 reads, and contained 3648 and 1579
columns, respectively.

Nonlinear models yielded significant correlations between
alpha-diversity metrics and the distance from the cage, except
Pielou’s evenness (Figure S2). The NMDS analysis of the beta-
diversity matrix showed that the distance from the cage is
strongly structuring foraminifera communities, and that the
reference BI values inferred from the macro-invertebrate data
were strongly correlated with the ordination (Figure S3).

Taxonomic Composition. Among the 9 170 OTUs, 2,378
(representing 70% of the reads) were assigned to a given
taxonomic rank based on the consensus of three maximum hits
with a minimum of 90% similarity and coverage on reference
sequences of our curated foraminifera SSU rDNA database.
Among these assigned OTUs, the majority belong to orders
Rotaliida and Textulariida and class “Monothalamea” (Table
S7). Sixty-two OTUs (less than 0.1% of the reads) were
assigned to one of the remaining orders (Miliolida, Globerinida,
Spirillinida and Robertinida) and 190 OTUs (4.3% of the
reads) matched uncultured foraminifera sequences of GenBank
with more than 90% of similarity and coverage. The remaining
6,602 OTUs (25.7% of the reads) could not be assigned to any

reference sequence in foraminiferal database and matched no
GenBank sequence. The five most abundant taxa include 3
rotaliids: Bulimina marginata (37 OTUs, representing 10.2% of
the reads), Stainforthia fusiformis (21 OTUs, representing 7.7%
of the reads), and Cibicidoides lobatulus (39 OTUs, representing
7% of the reads), a monothalamid: Bathysiphon argenteus (18
OTUs, representing 7.4% of the reads) and a textularid genus:
Reophax sp. (105 OTUs, representing 5.7% of the reads).

Predictions of Bl Values from eDNA Metabarcoding
Data. The three supervised approaches yielded accurate BI
values predictions (Table 1). Linear models and Kappa tests
showed significance for the correlation screening approach to
predict the BI values from ecological weights assignments. Yet,
R* and Kappa statistics were higher for the diversity and
composition learning approaches than for the correlation
screening approach, as measured for ISI, NSI and NQI1
(Table 1 and Figure 1). For AMBI, the correlation screening
approach performed better than the diversity learning using
SOM algorithm and the composition learning using the RF
algorithm.

The diversity learning approach using the RF algorithm
yielded predictions that had the highest Kappa for NSI and
NQI1, with 33 and 37 correctly classified grabs and with 15 and
11 grabs classified within 1 category mismatch, respectively.
The Kappa statistics were 0.907 for NSI and 0.88 for NQII,
indicating an almost perfect agreement between molecular and
morpho-taxonomic data. Rarefying the OTU-to-sample data set
had a small effect on the per-sample variation of the inferred
values for both NSI (Figure S4) and NQI1 (Figure SS). The
most important diversity metrics (as measured by the RF
algorithm) to infer NSI and NQIl were Chao and OTU
richness, and to a lesser extent SN (Figures S6 and S7).

The composition learning approach using the SOM
algorithm yielded predictions that had the highest Kappa for
AMBI and ISI, with respectively 33 and 25 correctly classified
grabs, 13 and 21 classified within 1 category mismatch, and 2
misclassified for both Bls. The Kappa statistics were 0.711 for

DOI: 10.1021/acs.est.7b01518
Environ. Sci. Technol. XXXX, XXX, XXX—XXX


http://pubs.acs.org/doi/suppl/10.1021/acs.est.7b01518/suppl_file/es7b01518_si_002.xlsx
http://pubs.acs.org/doi/suppl/10.1021/acs.est.7b01518/suppl_file/es7b01518_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.7b01518/suppl_file/es7b01518_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.7b01518/suppl_file/es7b01518_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.7b01518/suppl_file/es7b01518_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.7b01518/suppl_file/es7b01518_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.7b01518/suppl_file/es7b01518_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.7b01518/suppl_file/es7b01518_si_001.pdf
http://dx.doi.org/10.1021/acs.est.7b01518

Environmental Science & Technology

| Article |

A

©

AMBI prediction
SOM algorithm on composition data

ISI prediction
SOM algorithm on composition data

Aukrasanden I « _| * Aukrasanden
® Beitveitnes - * Beitveitnes
o J° Bjornsvik ® s ° T ® Bjornsvik
* Nedre Kvarv o * Nedre Kvarv e d
® Storvika 1 ‘ +~ 7]  Storvika o e
<« ,/ * l
T .
. / . s | i)
5 ' 5 eyt
§ o+ g ‘4
[<} [<} © l 1
) ) A1
~ o <« 4 "
- o~ 4
R2=0.669™** R2=0.615"*"
Kappa =0.711*** Kappa =0.774***
i T T T T T °© T T T T T T
0 1 2 3 4 5 6 0 2 4 6 8 10 12
Morphology Morphology
NSI prediction NQI1 prediction
RF algorithm on diversity metrics o RF algorithm on diversity metrics
3 Aukrasanden - Aukrasanden
* Beitveitnes * Beitveitnes
® Bjornsvik ® Bjgrnsvik .
Q - ® Nedre Kvarv } ¥ g — ® Nedre Kvarv 3
o Storvika 3 o Storvika %
*
. . N I 1
. 5 87 !
5 * //r ! & } I/ﬁt/
3 3
8§ w | / 3 o
s - ] t
= . + s o | o
1 . °
o |
.
N
o
o -
Re=0.83" R
Kappa =0.907*** ° Kappa =0.88'
° T T T T T S T T T T
0 5 10 15 20 25 30 0.0 0.2 0.4 0.6 0.8 1.0
Morphology Morphology
B AMBI prediction ISI prediction NSI prediction NQI1 prediction
=) g IS o
e = = e
=3 =3 =] Q n=37
F n=33 ® = o33 :
g8 3 n=25 3 3
©
5 € e e g
=1 -
® g n=7 noe & 1= 8 - =7 LTI , n=s
- - —1n= n=
Y PR PR )
2 -1 0 1 2 -1 0 1 2 3 1 0 1 1 0 1
® 0 168  —— g © 64  —T o6  —/—
S = '
2 | 1
g H L < | e | |
c ' 149 —— | S |
E 0.6 05’4 ' ~ 2.34 | oo7
1 ° T -0.16 0.83
e 0.07 0.46 0.03
‘T " 001 _OIQGE ° - s _| T | oot
d S
- I Rl : o 182 T _| -004
3 ! 279 —— ! !
3w i < ¥ ! 2 !
g2 15— T o @ 558 —Ll— s .o L

Figure 1. (A) Correlation between the BI values computed from the morpho-taxonomic inventories (morphologic data) and the one predicted from
supervised machine learning from the foraminifera SSU 37F data (molecular data). The plots are obtained from the predictive models giving the best
accuracy (i.e., highest Kappa statistic, see Table 1). AMBI and ISI predictions were done using the SOM algorithm on composition data. NSI and
NQI1 predictions were done using the RF algorithm on diversity metrics. Each dot and error bars represent the average and standard deviation of
the predicted BI values for the sediment sample of a grab. (B) Barplots indicate the amount (number over bars) and percentage (y axis) of correct
classifications (0 on x axis) and misclassifications. (C) Boxplots indicates the median and quartile values (black numbers) and the mean value (red
number) of the difference between the predicted and the reference BI values.

AMBI and 0.774 for IS], indicating a substantial agreement
between molecular and morpho-taxonomic data. The RF
algorithm measurements of features importance showed that
the OTUs that were most important for inferring AMBI and ISI
were not necessarily the most abundant in terms of reads
counts (Figure S8 and S9). The most useful OTU to infer
AMBI values was unassigned and represented 0.7% of the reads
(55063 reads) and that to infer ISI values was an unidentified
Monothalamid representing 0.2% of the reads (19 123 reads).

Discarding rare OTUs represented by less than 10 or 100 reads
did not significantly change the accuracy of Bls predictions
using composition learning (Table S8).

Predicted values obtained with the best predictive models for
each of the four Bls were neither over nor underestimated
(Figure 1). Grabs were evenly distributed around the correct
classification (Figure 1B). The median and the mean of the
differences between the predicted and reference BI values were
close to zero and with moderate variances, which means that
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our predictive models were not biased (Figure 1C). Mann—
Whitney tests of difference between the predicted and reference
BI values were not significant for all fish farm and BI
combinations, which means that predictive models were
accurately predicting BI values at the scale of the fish farm
(Figure S10).

B DISCUSSION

Our study demonstrates the usefulness of supervised machine
learning (SML) approaches to infer biotic indices from eDNA
metabarcoding data. To our knowledge, this is the first time
that the SML approaches have been applied to eukaryotes
eDNA-based biomonitoring surveys (but see35 for a bacteria-
based survey using SML). Until now, only those groups of
eukaryotes for which DNA barcodes are available in reference
sequence database and for which an autecological value is
known could be taken into account in eDNA-based
biomonitoring studies.”*>* Provided that an appropriate
training data set is available, SML approaches offer a
workaround to the dependency on reference databases and
thus allow extending the range of potential genetic
bioindicators to other taxonomic groups, especially to the
small-sized inconspicuous taxa, which typically dominate the
eDNA samples.”* With the notable exception of diatoms,””
most of these small-sized taxa remain poorly described in terms
of autecology (but see68), which make them useless for
computing biotic indices. Using SML approaches, there is no
need for prior knowledge on the ecological signal conveyed by
OTUs, because these signals are inferred during the statistical
modeling.

Our results showed that accurate predictive models for Bls
inference could be obtained with diversity metrics or
composition data derived from eDNA metabarcoding data as
features in SML approaches. These models led to similar
bioassessments as the ones obtained using traditional
morphology-based macrofaunal surveys. The possibility of
using diversity metrics or composition data for making Bls
predictions on new samples may give a practical flexibility for
biomonitoring surveys. On the one hand, using the diversity
metrics in SML reduces the dimensions of the data and
therefore the computation time, and allows the prediction of
Bls for samples coming from various geographical regions,
where the taxonomic composition may be different. On the
other hand, using composition data to predict Bls seems more
appropriate if a significant proportion of OTUs are present in
both the training and the testing data set. Composition data
should capture species interactions’”’® and give more
importance to key taxa consistently responding to specific
environmental variation,”"”* which could yield better results for
atypical samples or statistical outliers.

While analyzing eDNA metabarcoding data, various bio-
logical and technical issues need to be considered for the
interpretation of alpha-diversity and beta-diversity. The
presence of extracellular DNA necessarily blurs the ecological
signal conveyed in eDNA data sets as living, dead and inactive
cells cannot be readily distinguished.73’74 In our study, samples
were collected from surface sediments, where it is reasonable to
expect that most of the DNA come from living or recently dead
organisms. Intragenomic rRNA sequence variation”> and rRNA
gene copy-number variation”® brings qualitative and quantita-
tive bias in metabarcoding data. From a technical point of view,
PCR, sequencing’’ and mistagging errors*® could add further
noise in the data. However, this noise can be assumed to be

somewhat constant across samples, and therefore disentangled
from the ecological signal by SML algorithms.

The occurrence of OTUs splitting, that is, morphospecies
represented by several OTUs, could also be seen as a problem
for the interpretation of eDNA data, because the biological
meaning of OTUs is unclear’*™*" and because it increases the
dimensionality of the data (see below). However, there is also
some advantages related to the high number of OTUs. For
instance, it has been shown that bacterial sequences diverging
by a single nucleotide can display a different abundance profile
across environmentally distinct samples,”" pointing out that
subspecies units can be ecologically informative. In our study,
several foraminiferal morphospecies were represented by
multiple OTUs. The detailed analysis of these OTUs in the
case of the two dominant morphospecies: Bulimina marginata
and Cibicidoides lobatulus, showed that in the first case the read
abundance profiles of the two most abundant OTUs were
highly similar across samples (spearman rho = 0.91, p < 0.001,
Table S9), while in the second case the two most abundant
OTUs displayed different profiles across samples (spearman
rho = 0.09, p = 0.32, Table S9). This suggests that these OTUs
could represent different populations of the same species that
exhibit different ecological preference or that they belong to
cryptic species complexes that our reference sequence database
did not capture. The temptation to merge OTUs that are
assigned to the same morphospecies, in an effort of matching
the metabarcoding data with the observable morphospecies
data, is questionable for two reasons. First, it means grouping
sequences based on our current morpho-taxonomic knowledge,
which is reflected in reference sequence databases, although
morphospecies, from which DNA barcodes are generated, are
not necessarily well-defined. Second, ecologically distinct
subspecies units could be grouped together, losing the
ecological signal conveyed by distinct OTUs into a single
heterogeneous OTU. Because this signal is used for BI
calculation, we think that SML approaches applied to
biomonitoring would be more accurate in the case of OTUs
splitting than in the case of OTUs merging. Furthermore, we
think that SML approaches would as well benefit from the
automation of a workflow that is entirety independent from
reference taxonomic database, to be reproducible over time.

Building predictive models from eDNA composition data
using SML approaches hold challenges too. Metabarcoding data
are usually characterized by a much higher number of OTUs
than samples,®” and this can be further increased by the OTUs
splitting, like in the present study. In SML, this data property
makes the predictive models prone to be affected by “the curse
of dimensionality”.>’ Indeed, the probability to observe, by
chance, a perfect correlation between the relative abundance of
one OTU and the variation of a BI increases with the number
of OTUs. This could lead to the overfitting of the model, thus
decreasing its accuracy. Finding a trade-off between the OTU
granularity (dimensionality) and the separation of ecologically
relevant units appears as a major challenge for SML approaches
applied to metabarcoding data. Although our data set was
highly dimensional, our predictive models were likely not
overfitted for two reasons. First, the overfitting is controlled
through the growing of a “forest” of regression trees that are
built on a random subset of the data in the RF algorithm,***
and we used a 10-fold cross-validation step for model selection
using the SOM algorithm, a common procedure to prevent
such problem.””* Second, we showed that our models still
accurately predicted BI values without 80% of the OTUs
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removed based in their low abundance, supporting that our
models built on the full data set do not tend to overfit due to
the presence of numerous rare OTUs.

Future efforts should investigate whether accurate SML
predictions can be realized in broad routine applications. Our
results were achieved with a relatively small training data set
and increasing the number of sampled farms to cover a wider
sampling area will likely further refine our predictive models.
Given the ability to multiplex hundreds of samples and to
perform analyses rapidly, cost-effective biomonitoring solutions
could be proposed in matters of days instead of months.**
Hence, an eDNA-based early warning system adapted for the
pro-active management of marine industrial activities could be
envisioned, as it has been alreadg proposed for others
ecosystems and type of bioindicators.”>*®
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